Как правильно составить пропорцию

Как составить пропорцию? Поймет любой школьник и взрослый

Для решения большинства задач в математике средней школы необходимо знание по составлению пропорций. Это несложное умение поможет не только выполнять сложные упражнения из учебника, но и углубиться в саму суть математической науки. Как составить пропорцию? Сейчас разберем.

Самым простым примером является задача, где известны три параметра, а четвертый необходимо найти. Пропорции бывают, конечно, разные, но часто требуется найти по процентам какое-нибудь число. Например, всего у мальчика было десять яблок. Четвертую часть он подарил своей маме. Сколько осталось яблок у мальчика? Это самый простой пример, который позволит составить пропорцию. Главное это сделать. Изначально было десять яблок. Пусть это 100%. Это мы обозначили все его яблоки. Он отдал одну четвертую часть. 1/4=25/100. Значит, у него осталось: 100% (было изначально) — 25% (он отдал) = 75%. Эта цифра показывает процентное отношение количества оставшихся фруктов к количеству имевшихся сначала. Теперь у нас есть три числа, по которым уже можно решить пропорцию. 10 яблок — 100%, х яблок — 75%, где х — искомое количество фруктов. Как составить пропорцию? Необходимо понимать, что это такое. Математически это выглядит так. Знак равно поставлен для вашего понимания.

Оказывается, что 10/x = 100%/75. Это и есть основное свойство пропорций. Ведь чем больше x, тем больше процентов составляет это число от исходного. Решаем эту пропорцию и получаем, что x=7,5 яблок. Почему мальчик решил отдать нецелое количество, нам неизвестно. Теперь вы знаете, как составить пропорцию. Главное, найти два соотношения, в одном из которых есть искомое неизвестное.

Решение пропорции часто сводится к простому умножению, а потом к делению. В школах детям не объясняют, почему это именно так. Хотя важно понимать, что пропорциональные отношения есть математическая классика, сама суть науки. Для решения пропорций необходимо уметь обращаться с дробями. Например, часто приходится переводить проценты в обыкновенные дроби. То есть запись 95% не подойдет. А если сразу написать 95/100, то можно провести солидные сокращения, не начиная основного подсчета. Сразу стоит сказать, что если ваша пропорция получилась с двумя неизвестными, то ее не решить. Никакой профессор вам здесь не поможет. А ваша задача, скорее всего, имеет более сложный алгоритм правильных действий.

Рассмотрим еще один пример, где нет процентов. Автомобилист купил 5 литров бензина за 150 рублей. Он подумал о том, сколько он бы заплатил за 30 литров топлива. Для решения этой задачи обозначим за x искомое количество денег. Можете самостоятельно решить эту задачу и потом проверить ответ. Если вы еще не поняли, как составить пропорцию, то смотрите. 5 литров бензина — это 150 рублей. Как и в первом примере, запишем 5л — 150р. Теперь найдем третье число. Конечно, это 30 литров. Согласитесь, что пара 30 л — х рублей уместна в данной ситуации. Перейдем на математический язык.

5 литров — 150 рублей;

30 литров — х рублей;

Решаем эту пропорцию:

Вот и решили. В своей задаче не забудьте проверить на адекватность ответ. Бывает, что при неправильном решении автомобили достигают нереальных скоростей в 5000 километров в час и так далее. Теперь вы знаете, как составить пропорцию. Также вы сможете ее решить. Как видите, в этом нет ничего сложного.

Задачи на проценты: стандартный расчет с помощью пропорций

Сегодня мы продолжаем серию видеоуроков, посвященных задачам на проценты из ЕГЭ по математике. В частности, разберем две вполне реальных задачи из ЕГЭ и еще раз убедимся, насколько важно внимательно читать условие задачи и правильно его интерпретировать.

Итак, первая задача:

Задача. Только 95% и 37 500 выпускников города правильно решили задачу B1. Сколько человек правильно решили задачу B1?

На первый взгляд кажется, что это какая-то задача для кэпов. Наподобие:

Задача. На дереве сидело 7 птичек. 3 из них улетело. Сколько птичек улетело?

Тем не менее, давай все-таки сосчитаем. Решать будем методом пропорций. Итак, у нас есть 37 500 учеников — это 100%. А также есть некое число x учеников, которое составляет 95% тех самых счастливчиков, которые правильно решили задачу B1. Записываем это:

37 500 — 100%
X — 95%

Нужно составить пропорцию и найти x . Получаем:

Читать еще:  Как правильно сделать плитный фундамент

Перед нами классическая пропорция, но прежде чем воспользоваться основным свойством и перемножить ее крест-накрест, предлагаю разделить обе части уравнения на 100. Другими словами, зачеркнем в числителе каждой дроби по два нуля. Перепишем полученное уравнение:

По основному свойству пропорции, произведение крайних членов равно произведению средних членов. Другими словами:

Это довольно большие числа, поэтому придется умножать их столбиком. Напоминаю, что пользоваться калькулятором на ЕГЭ по математике категорически запрещено. Получим:

Итого ответ: 35 625. Именно столько человек из исходных 37 500 решили задачу B1 правильно. Как видите, эти числа довольно близки, что вполне логично, потому что 95% тоже очень близки к 100%. В общем, первая задача решена. Переходим к второй.

Задача на проценты №2

Задача. Только 80% из 45 000 выпускников города правильно решили задачу B9. Сколько человек решили задачу B9 неправильно?

Решаем по той же самой схеме. Изначально было 45 000 выпускников — это 100%. Затем из этого количества надо выбрать x выпускников, которые должны составить 80% от исходного количества. Составляем пропорцию и решаем:

45 000 — 100%
x — 80%

Давайте сократим по одному нулю в числителе и знаменателе 2-й дроби. Еще раз перепишем полученную конструкцию:

Основное свойство пропорции: произведение крайних членов равно произведению средних. Получаем:

45 000 · 8 = x · 10

Это простейшее линейное уравнение. Выразим из него переменную x :

x = 45 000 · 8 : 10

Сокращаем по одному нулю у 45 000 и у 10, в знаменателе остается единица, поэтому все, что нам нужно — это найти значение выражения:

Можно, конечно, поступить так же, как в прошлый раз, и перемножить эти числа столбиком. Но давайте не будем сами себе усложнять жизнь, и вместо умножения столбиком разложим восьмерку на множители:

x = 4500 · 2 · 2 · 2 = 9000 · 2 · 2 = 36 000

А теперь — самое главное, о чем я говорил в самом начале урока. Нужно внимательно читать условие задачи!

Что от нас требуется узнать? Сколько человек решили задачу B9 неправильно. А мы только что нашли тех людей, которые решили правильно. Таких оказалось 80% от исходного числа, т.е. 36 000. Это значит, что для получения окончательного ответа надо вычесть из исходной численности учеников наши 80%. Получим:

45 000 − 36 000 = 9000

Полученное число 9000 — это и есть ответ к задаче. Итого в этом городе из 45 000 выпускников 9000 человек решили задачу B9 неправильно. Все, задача решена.

Я надеюсь, что этот ролик поможет тем, кто самостоятельно готовится к ЕГЭ по математике. А у меня на этом все. С вами был Павел Бердов. До новых встреч!:)

Как правильно составить пропорцию

Пропорции — такое знакомое сочетание, которое известно наверное с начальных классов общеобразовательной школы. В самом общем понимании , пропорция это равенство двух и более отношений.

То есть если есть некие числа A, B и C

если чисел четыре A, B, C и D

то или тоже являются пропорцией

Самый просто пример где используется пропорция, это вычисление процентов.

В общем случае, применение пропорций настолько широко, что проще сказать где они не применяются.

Пропорции могуит быть использованы для определения расстояний, масс, объемов, а также количества чего бы то ни было, при одном важном условии: в пропорции, между разными объектами должны быть линейные зависимости. Ниже, на примере строительства макета медного всадника, Вы увидите как надо считать пропорции где есть нелинейные зависимости.

Определить сколько килограмм риса будет если взять 17 процентов от общего объема риса в 150 килограмм?

Составим пропорцию на словах: 150 килограмм это общий объем риса. Значит примем его за 100%. Тогда 17% от 100% будет рассчитываться как пропорция, двух отношений: 100 процентов относятся к 150 килограммам так же , как 17 процентов к неизвестному числу.

Теперь неизвестное число вычиляется элементарно 25.5″ style=»width: 186px; height: 17px;» />

То есть наш ответ 25, 5 килограмм риса.

С пропорциями также связаны интересные загадки, которые показывают, что не надо необдуманно применять пропорции на все случаи жизни.

Вот одна из них, немного модифицированная:

Для демонстрации в офисе компании, директор приказал создать макет скульптуры «Медный всадник» без гранитного постамента . Одно из условий — макет должень быть сделан из тех же материалов что и оригинал, соблюдены пропорции и высота макета была ровно 1 метр. Вопрос: Какова будет масса макета ?

Для начала обратимся к справочникам.

Высота всадника — 5,35 метров, а его вес 8 000 кг.

Читать еще:  Правильно поставить ударение слове балованный

Если мы будем использовать самую первую мысль — составить пропорцию: 5,35 метров относится к 8 000 килограммам как 1 метр к неизвестной величине, то можем даже не начинать расчет , так как ответ будет неправильный.

Все дело в небольшом нюансе, который обязательно нужен учитывать. Все дело в том, что связь между массой и высотой скульпутры нелинейная, то есть нельзя сказать, что увеличив, к примеру, куб на 1 метр(соблюдая пропорции, что бы он кубом и остался), мы увеличим его вес на ту же величину.

Это легко проверить, на примерах:

1. склеем куб с длиной ребер в 10 сантиметров. Сколько туда войдет воды? Логично что 10*10*10 =1000 кубический сантиметров, то есть 1 литр. Ну и так как налили туда воду(плотность равна единице), а не другую жидкость, то и масса будет равна 1 кг.

2. склеем подобный куб но с длиной ребер в 20 см. Объем воды налитой туда будет равен 20*20*20=8000 куб.сантиметров, то есть 8 литров. Ну и вес естественно 8 кг.

Несложно заметить что связь между массой и изменением длины ребра куба нелинейная, а точнее говоря кубическая.

Напомним что объем — это произведение высоты, ширины и глубины.

То есть при изменение фигуры ( при соблюдении пропорций / формы) линейного размера(высоты, ширины, глубины) масса/объем объемной фигуры меняется кубически.

Линейный размер у нас изменился с 5,35 метров до 1 метра, тогда масса(объем) изменится как кубический корень из 8000/x

И получаем, что макет Медного всадника в офисе фирмы при высоте в 1 метр будет весить 52 килограмма 243 грамма.

Но с другой стороны если бы задачу ставили вот так » макет должень быть сделан из тех же материалов что и оригинал, соблюдены пропорции и объем 1 кубический метр» то зная, что между объемом и массой линейная зависимость — мы бы как раз воспользовались стандартным отношением, старого объема к новому, и старой массы к неизвестному числу.

Но наш бот помогает вычислять пропорции в других, чаще встречающихся и практичных случаях.

Наверняка, он пригодится всем домохозякам, которые готовят еду.

Возникают ситуации, когда найден рецепт изумительного торта в 10 кг, но объем его слишком велик для того что бы сготовить.. Хотелось бы поменьше, например всего лишь в два килограмма, но как рассчитать все новые веса и объемы инградиентов?

Вот тут то и поможет Вам бот который сможет расчитать новые параметры 2-х килограммого торта.

Также бот поможет в расчетах для работящих мужчин, которые строят дом и им нужно рассчитать сколько нужно взять инградиентов для бетона если у него только 50 килограммов песка.

Для пользователй XMPP клиентов: pro

где строка имеет обязательные элементы

число1/число2- нахождение пропорции.

Что бы не пугались такого куцего описания, приведем здесь пример

200 300 100 3 400/100

Что говорит например о следующем:

200 грамм муки, 300 миллилитров молока, 100 грамм масла, 3 яйца — выход блинчиков 400 грамм.

Сколько надо взять инградиентов что бы испечь всего 100 грамм блинчиков?

Как несложно заметить

400/100 это отношение типового рецепта и того выхода, который мы хотим получить.

Более подробно примеры мы рассмотрим в соответствующем разделе.

Подружка поделилась замечательным рецептом

Тесто: 200 грамм мака, 8 яиц, 200 сахарной пудры, 50 грамм тертой булки, 200 грамм молотых орехов, 3 стаканаложки меда.
Мак варить 30 минут на слабом огне, растереть пестиком, добавить растопленный мед, молотые сухари, орехи.
Яйца взбить с сахарной пудрой, добавить в массу.
Тесто осторожно перемешать, вылить в форму, выпечь.
Остывший корж разрезать на 2 пласта, промазать кислым вареньем, потом кремом.
Украсить ягодами из варенья.
Крем: 1 стакан сметаны, 1/2 стакана сахара, взбить.

Но начав делать, вы обнаружили что у вас всего 6 яиц.

Какие же пропорции надо взять что бы не испортить рецепт?

Пишем в строку все данные (кроме крема) этого рецепта

200 8 200 50 200 3

а теперь показываем что у нас вместо 8 яиц, всего 6

Пропо́рция равенство двух отношений, т. е. равенство вида a : b = c : d, или, в других обозначениях, равенство

Если a : b = c : d, то a и d называют крайними , а b и cсредними членами пропорции.

От « пропорции» никуда не деться, без нее не обойтись во многих задачах. Выход только один – разобраться с этим отношением и пользоваться пропорцией как палочкой-выручалочкой.

Прежде чем приступать к рассмотрению задач на пропорцию, важно вспомнить основное правило пропорции:

В пропорции

произведение крайних членов равно произведению средних

Если какая-то величина в пропорции неизвестна, ее легко будет найти, опираясь на это правило.

Читать еще:  Правильно посадить проросшее семечко

То есть неизвестная величина пропорции – значении дроби, в знаменателе которой – то число, которое стоит напротив неизвестной величины, в числителе – произведение оставшихся членов пропорции (независимо от того, где эта неизвестная величина стоит).

Задача 1.

Из 21 кг хлопкового семени получили 5,1 кг масла. Сколько масла получится из 7 кг хлопкового семени?

Мы понимаем, что уменьшение веса семени во сколько-то раз, влечет за собой уменьшение веса получаемого масла во столько же раз. То есть величины связаны прямой зависимостью.

Заполним таблицу:

Неизвестная величина – значение дроби , в знаменателе которой – 21 – величина, стоящая напротив неизвестного в таблице, в числителе – произведение оставшихся членов таблицы-пропорции.

Поэтому получаем, что из 7 кг семени выйдет 1,7 кг масла.

Чтобы правильно заполнять таблицу, важно помнить правило:

Одинаковые наименования нужно записывать друг под другом. Проценты записываем под процентами, килограммы под килограммами и т.д

Задача 2.

Перевести в радианы.

Мы знаем, что . Заполним таблицу:

Откуда

Ответ:

Задача 3.

На клетчатой бумаге изображён круг. Какова площадь круга, если площадь заштрихованного сектора равна 27?

Хорошо видно, что незаштрихованный сектор соответствует углу в (например, потому, что стороны сектора образованы биссектрисами двух смежных прямых углов). А поскольку вся окружность составляет , то на закрашенный сектор приходится .

Откуда площадь круга – есть .

Ответ:

Задача 4. После того, как было вспахано 82% всего поля, осталось вспахать еще 9 га. Какова площадь всего поля?

Все поле составляет 100%, и поскольку вспахано 82%, то осталось вспахать 100%-82%=18% поля.

Заполняем таблицу:

Откуда получаем, что все поле составляет (га).

Ответ:

А следующая задача – с засадой.

Задача 5.

Расстояние между двумя городами пассажирский поезд прошел со скоростью 80км/ч за 3 часа. За сколько часов товарный поезд пройдет то же расстояние со скоростью 60 км/ч?

Если вы будете решать эту задачу аналогично предыдущей, то получите следующее:

время, которое потребуется товарному поезду, чтобы пройти то же расстояние, что и пассажирским, есть часа. То есть, получается, что идя с меньшей скоростью, он преодолевает (за одно и тоже время) расстояние быстрее, нежели поезд с большей скоростью.

В чем ошибка рассуждений?

До сих пор мы рассматривали задачи, где величины были прямопропорциональны друг другу , то есть рост одной величины во сколько-то раз, дает рост связанной с ней второй величины во столько же раз (аналогично с уменьшением, конечно). А здесь у нас другая ситуация: скорость пассажирского поезда больше скорости товарного во сколько-то раз, а вот время, требуемое на преодоление одного и того же расстояния, требуется пассажирскому поезду меньшее во столько же раз, нежели товарному поезду. То есть величины друг другу обратно пропорциональны .

Схему, которой мы пользовались до сих пор, надо чуть изменить в данном случае.

Пассажирский поезд со скоростью 80 км/ч ехал 3 ч, следовательно, он проехал км. А значит товарный поезд это же расстояние преодолеет за ч.

То есть, если бы мы составляли пропорцию, нам следовало бы поменять местами ячейки правой колонки предварительно. Получили бы: ч.

Ответ: .

Поэтому, пожалуйста, будьте внимательны при составлении пропорции. Разберитесь сначала, с какой зависимостью имеете дело – с прямой или обратной.

Пропорции, члены пропорции, основное свойство пропорции

Пропорции, члены пропорции. Основное свойство пропорции

Частное от деления числа a на число b называют отношением числа a к числу b .

Число a называют предыдущим членом отношения , число b – последующим членом отношения .

Пропорцией называют равенство двух отношений:

.

Иногда пропорцию записывают так:

И в одной, и во второй формах записи пропорции числа a и d называют крайними членами пропорции , а числа b и c – средними членами пропорции .

Для любой пропорции справедливо следующее равенство, которое называют основным свойством пропорции :

Словесно это равенство можно сформулировать так: произведение крайних членов пропорции равно произведению средних членов пропорции.

Для того, чтобы доказать основное свойство пропорции, умножим пропорцию на выражение .

В результате получим:

что и требовалось доказать.

Основное свойство пропорции позволяет по трем любым известным членам пропорции найти четвертый неизвестный член пропорции. Покажем это на двух примерах.

Пример 1 . Найти неизвестный член пропорции x , если

Решение . Воспользовавшись основным свойством пропорции, получаем:

Пример 2 . Найти неизвестный член пропорции x , если

Решение . Воспользовавшись основным свойством пропорции, получаем:

Ответ : .

Из основного свойства пропорции легко вытекают также свойства пропорции , которые называют перестановкой членов пропорции . Эти свойства формулируются так: если

.

Производные пропорции

Справедливы также свойства пропорции , которые называют производными пропорциями . Эти свойства формулируются так: если

,

Ссылка на основную публикацию
Adblock
detector